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Abstract

This paper considers elastic wave propagation and vibration transmission in lightweight composite structures.

Specifically a spectral finite element method (SFEM) is developed as an effective numerical tool for the analysis of wave

motion in uniform laminated elastic media. In short, SFEM combines a standard finite element method in the direction of

layering together with analytical solutions for the remaining direction. This partial discretization leads naturally, via the

variational formulation, to dispersion relations for uniform sections of built-up laminates and thus provides valuable

information for a wave propagation analysis. Dynamic responses of the vibrating structures are also investigated and

numerical simulations compared against a standard finite element method. The predicted transfer accelerances obtained

for the steel beam and two sandwich panels are compared with measured data from laboratory experiments.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Sandwich plates are widely used in many technical applications, as this composition of a thin-walled
structure conveniently combines the properties of a high strength. Essentially, there are two possibilities to
describe dynamics of sandwich plates. Firstly some hypotheses may be adopted concerning the deformation of
an arbitrary cross-section of the layers and reduced equations may be derived [1,2]. The reduced formulations,
modified Timoshenko or Euler–Bernoulli theory for example, do not permit the capture of short-wave, high-
frequency motions in sandwich plates, but the essential features of wave propagation in these structures have
been shown to be valid in an audio-frequency range. Secondly the equations of motion for the ‘‘skins’’ and
‘‘core’’ may be formulated in the framework of a theory of elasticity, which may be solved with continuity
conditions at the interfaces between layers, a natural setting for a variational formulation. This is the
approach taken here.

In this work the transmission and propagation of vibrations through simple laminated sandwich structures is
investigated computationally and experimentally. A number of computational methods, in particular the finite
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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element method, are robust techniques that predict dynamic responses with complex geometrical and material
structures. However, there are many limitations to numerical predictions. Namely, the simulation of high-
frequency excitation for many structures of interest require extremely large computing resources usually
beyond a reasonable research budget. Spectral methods are now an established alternative to finite difference
and finite element methods to solve elliptic partial differential equations. Techniques such as spectral methods,
which capture some dynamics of a problem, are naturally chosen to solve problems in regular rectangular,
cylindrical or spherical regions. Specifically the spectral finite element method (SFEM) has been used mainly in
the context of structural vibrations; its early history can be found in Ref. [3] and later in the comprehensive
review by Williams and Wittrick [4]. In the SFEM, adopted here, the region of interest is decomposed into
rectangular elements. Then a variational formulation, of the underlying equations of motion, is approximated
with trial functions that are conforming across element boundaries, thus automatically fulfilling coupling
conditions in the region. Exploiting the regular Cartesian rectangular domain the physical field of interest may
be separated in each element by a combination of polynomials in the transversal z-direction with wave influence
functions in the longitudinal x-direction. Subsequently eigenfunctions of a derived differential operator are
chosen as wave propagation trial functions in the description of the local spectral element. Since the spectral
element does not rely on any wavelength-dependent discretization in the longitudinal direction the SFEM can
be applied to fairly short as well as very long wave propagation problems. The SFEM has also been applied, in
various forms, to a number of acoustic and structural waveguide problems. In particular the method used in
Refs. [5,6] can be viewed as a merger of the dynamic stiffness method and the finite element method. The
principle of the method is based on a variational formulation for non-conservative motion in the frequency
domain. The SFEM has also been used to study vibration in beam frame-works [5], for fluid-filled pipes [6], and
recently for acoustic ducts [7]. Use of a variational formulation for the spectral method provides a natural basis
for approximations and a straightforward method for combination with standard finite elements.

The use of a one-dimensional finite element scheme to describe the cross-sectional deformation of a laminate
has been proposed by Dong and Nelson [8,9], Lundberg et al. [10], Datta et al. [11], Xi et al. [12], and Shorter
[13]. Peplow and Finnveden [14] developed the method further to describe ground vibration transmission over
a layered bedrock medium with a single object inclusion. Essentially all the previous analyses show how the
characteristic equation for free-wave propagation can be formulated as a linear eigenvalue problem in
frequency. Datta et al. [11] investigated the dispersion curves of anisotropic laminates and Dong and Nelson
[8] assumed the state of plane strain in order to simplify the algebra which was later extended by Shorter [13]
for modelling the structural–acoustic response of sandwich panels and constrained layer damping treatments.
Xi et al. [12] adopted a finite element based method, similar to the previous approaches for rectangular
structures, to investigate the dispersion curves of elastic laminated composite cylinders.

The paper is organized as follows. In Section 2 the variational principle for non-conservative acoustic
motion is stated and a description of the trial functions is given and associated dynamic stiffness matrices are
presented. Dispersion relations and elastic responses for various plate structures are shown in Section 3 with
comparison to measurement data. Some conclusions are given in Section 4.

2. Theoretical models

Consider the cross-section of the sandwich laminate illustrated in Fig. 1(a) and the panels considered in the
study illustrated in Fig. 1(b). The laminate consists of an arbitrary number of solid linear viscoelastic and elastic
layers and possesses the same properties as a layered waveguide. The current analysis assumes that the layers
are planar and isotropic. Uniform properties along the x-direction are assumed in the waveguide formulation
described here. For the cross-section in the z-plane, polynomial displacement functions are prescribed, whereas
the nodal displacements are here considered functions of x. The displacement functions are used as test
functions in a variational approach and the equations of motion for a layered element may be defined.

2.1. Variational form

For the virtual work formulation one may follow standard methods whereby a Lagrangian formulation is
devised and minimized for the motion of the system subject to the boundary conditions [15]. Displacements,
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Fig. 1. (a) Configuration of typical sandwich laminate structure in the x2z plane; (b) geometry of each panel from top to bottom: steel

panel, total thickness h ¼ 1:0mm, width b ¼ 0:12m, and length L ¼ 1:0m; ceramic panel, total thickness h ¼ 55mm, width b ¼ 0:15m,

and length L ¼ 1:65m (showing typical positions of hammer excitation and accelerometer by circle and filled circle along centre line,

respectively); aluminium foam panel, total thickness h ¼ 12mm, width b ¼ 0:12m, and length L ¼ 1:2m.
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stresses and strains in a particular rectangular region, Fig. 1(a), may be denoted by uðx; tÞ, rðx; tÞ, and eðx; tÞ,
respectively, and x ¼ ðx; zÞ. To represent a wave propagating in the direction of the waveguide, displacements
of the form: uðx; tÞ ¼ RefUðzÞ eiðot�zxÞg, where U represents a cross-sectional mode shape, z the wavenumber
constant and o the angular frequency.

The formulation of the governing equations is based on two-dimensional linear elasticity. The mechanical
variables are the displacement u, stress r, and strain e with components

u ¼ ðu;wÞT; r ¼ ðsxx;szz;sxzÞ
T; e ¼ ð�xx; �zz; �xzÞ

T. (1)

The stress–strain constitutive relations for each sub-region material are given by

r ¼ ½C�e, (2)
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where ½C�, the symmetric ð3� 3Þ matrix, contains the rectilinear elastic moduli. The linear strain-displacement
equations are written in split-operator form according to the coordinates ðx; zÞ,

e ¼ LðuÞ ¼ r̂z þ r̂
q
qx

� �
u, (3)

where

r̂z ¼

0 0

0
q
qz

q
qz

0

2
66664

3
77775; r̂ ¼

1 0

0 0

0 1

2
64

3
75. (4)

The governing equations of motion for the elastic material are derived by Hamilton’s principle [15]

d
Z Z

V

T � ðU þ V ÞdO
� �

dt ¼ 0, (5)

where T is the kinetic energy, U the strain energy and V the potential energy due to external forces and d
represents a first variation. The kinetic energy T in terms of the velocity vector _u, and strain energy U in terms
of the stress, are given by

T ¼
1

2

Z Z
O
_uT½q�h_udO; U ¼

1

2

Z Z
O

eT½C�edO, (6)

where ½q� ¼ r
0
0
r

h i
is the 2� 2 mass density matrix, h is thickness of structure, and for a plane-strain problem

the stiffness matrix, ½C� is given by

½C� ¼
Eh

ð1þ nÞð1� 2nÞ

ð1� nÞ n 0

n ð1� nÞ 0

0 0
1

2
ð1� 2nÞ

2
6664

3
7775,

where E denotes (a complex valued) Young’s modulus, and n the Poisson ratio. The potential energy V

hereforth consists of applied traction acting on the boundary

V ¼ �

Z
Gj

_uTrn dx, (7)

where rn denotes normal and shear tractions at the boundary. A modified version of Hamilton’s principle in
the frequency domain will be used here for the dissipative motion, see Ref. [5], since material is modelled
through a complex form of Young’s modulus, E ¼ E0ð1þ iZÞ where Z40 represents damping as a material
loss factor. Performing the variational operation on Eq. (5), and carrying out a partial integration with respect

to time, and assuming harmonic time dependence, e�iot, one obtainsZ
O
o2ðduaÞ

Th½q�u� LðduaÞ
T
½C�LðuÞdO ¼ 0, (8)

where superscript a denotes complex conjugate in the adjoint system having negative damping and virtual
quantities are denoted by d.

It is understood that the stiffness matrix ½C� takes a complex form in the following analysis and calculations.
In Eq. (8), only the adjoint of the displacement functions and their derivatives are being varied. During the
variational process, the longitudinal and vertical displacements u and w and their derivatives are viewed as
being independent from their complex conjugates. The underlying differential equation is linear and hence this
approach is in effect equivalent to varying the real and imaginary parts of the functions independently.
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2.2. Numerical modelling

In elastic waveguides with constant geometrical cross-section, the solutions of the governing equations of
motion are a combination of exponential terms describing the propagation with cross-sectional modes. Thus,
the axial x-dependence is separable from the cross-sectional z-dependencies. In this case, the application of the
finite element method, the displacement field of the cross-section of a rectangular element may be represented
by high-order polynomials, NjðzÞ, j ¼ 1; . . . ;M, Ref. [7]. For in-plane motion a combination of polynomials is
assumed. In the finite element discretization a cross-section is divided so that material parameters are constant
within each interval. Within one spectral finite element, the in-plane displacement field may be represented in
the coordinate system such that a dimensionless 2� 2m real-valued matrix ½NðzÞ� with the given coordinate
functions as elements, and a 2m� 1 vector ûðxÞ has the dimension of length,

uðx; zÞ ¼ ½NðzÞ�ûðxÞ, (9)

where the displacement function, uðx; zÞ ¼ ½uðx; zÞ;wðx; zÞ�T,

uðx; zÞ ¼ ½N1ðzÞ; 0;N2ðzÞ; . . . ; 0;NMðzÞ; 0�ûðxÞ,

wðx; zÞ ¼ ½0;N1ðzÞ; 0; . . . ;NM�1ðzÞ; 0;NM ðzÞ�ûðxÞ

using M piecewise polynomial shape functions, compactly supported over each interval in the vertical
direction. Elemental shape functions ûðxÞ will be defined later in the article.

Partial integration in the x-direction, assuming O ¼ H � T , where T :¼fx : �DpxpþDg, and H denotes
the uniform cross-section interval, leads to an expression given in Appendix, Eq. (18). The final integral
expression in Eq. (18) provides boundary conditions at the cross-section extremities. It is clear that this is the
natural boundary condition describing a stress-free condition. Since dû is arbitrary and û is a function of the
axial direction only, Eq. (18) yields a system of second-order differential equations. Hence the formulation
involves evaluating the derivatives and the integrals over z, and then integration by parts for the
x-dependence. Written as an analogy of Eq. (8), assuming a stress-free boundary:Z

ðduaÞ
T
½K2�

d2

dx2
þ ½K1�

d

dx
þ ½K0� � o2½M�

� �
ûdx ¼ 0. (10)

The system of equations, derived from Eq. (10), possesses constant matrix coefficients in the form of square
ðm�mÞ matrices ½K2�, ½K1�, ½K0�, and ½M�. Hence, the solutions of the linear homogeneous system,

ûl ¼ ðUlðxÞ;W lðxÞÞ
T, may be written as:

UlðxÞ ¼ clUl e
izl x; l ¼ 1; . . . ;m,

W lðxÞ ¼ dlUmþl e
izmþl x; l ¼ 1; . . . ;m, ð11Þ

where Ul is a vector representing the nodal amplitudes ðF1;l ;Fm;lÞ, ðF1þm;l ;F2m;lÞ, and interior amplitudes

ðFj;m; 2pjpm� 1Þ, ðFjþm;m; 2pjp2m� 1Þ and cl , dl are arbitrary constants. Under this assumption a

nonlinear eigenvalue problem arises, KðzÞU ¼ 0, which may be cast, simply, as a polynomial eigenvalue
problem,

½KðzÞ�U ¼ fz2½K2� � iz½K1� � ½K0� þ o2½M�gU ¼ 0 (12)

of order m for the variable z.
The eigenvalue problem relates the wavenumber z to the angular frequency o, one of them being given and

the other being the eigenvalue to be sought. If z 2 R is given, Eq. (12) is a generalized eigenvalue problem with
2m eigenvalues o2. If instead the angular frequency is given, Eq. (12) is a quadratic eigenvalue problem (QEP)
with 4m eigenvalues z, see Ref. [16] for discussion and review of numerical evaluation of QEP. In the latter
case, the eigenvalues are generally complex-valued and correspond to evanescent waves. For real values of the
wavenumber eigenvalues, z, corresponding to propagating waves, it is possible to find associated dispersion
relations for the layered system and is discussed further in Section 3.2.

The eigenvalue problem may be reduced to first-order form by introducing an auxiliary parameter, g ¼ iz
and variable v̂ ¼ gû. With this change of variables the polynomial eigenvalue problem (12) may be recast as
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a generalized (4m� 4m) linear eigenvalue problem known as a second companion form in Ref. [16],

½A�V̂ ¼ g½B�V̂, (13)

where

½A� ¼
�K0 þ o2M 0

0 I2m

" #
; ½B� ¼

K1 K2

I2m 0

" #
; V̂ ¼

û

gû

" #
.

The resolution of the matrix eigenvalue problem, Eq. (13) is itself easily achieved by a number of standard
computational routines where damping is included in the model, i.e. the value of the loss factor Z is positive. In
the present analysis a QZ algorithm with Cholesky factorization was used. This produces a set of eigenvalues
gl , l ¼ 1; . . . ; 4m and corresponding cross-sectional mode shapes or waveforms. Note that for zero damping
Z ¼ 0 the polynomial eigenvalue problem is of Hamiltonian type and care must be taken in evaluating the
eigenvalues as discussed in Ref. [16]. It has been found that some eigenvalues, g, violate the complex conjugate
pairing rule especially when located close to the imaginary axis. This lead to instability issues for zero and also
for very small values of damping Z � 0:1%. This may be overcome using other methods such as Van Loan’s
square-reduced algorithm [17] but is yet to be resolved.

Final construction of the set of basis functions, Eq. (9) and local dynamic stiffness matrix, defined over the
region Oj :¼H � T , where T :¼fx : �DpxpþDg, is standard and will only be briefly described here. By
consideration of the solutions in Eq. (11) it is clear that each wave influence function may be written as a linear
combination of these solutions

ûe
jkðxÞ ¼

X2m

l¼1

FjlEllðxÞX lkûk; j ¼ 1; . . . ; 2m; k ¼ 1; . . . ; 4m, (14)

where entries Fjl and Ell take the values of eigenvectors and exponential functions, respectively. Coefficients
X lk are to be determined by scaling the set of wave influence functions to unity. Substitution of Eq. (9) into
Eq. (8), over the local region Oj, and using the same matrices as in Eqs. (19)–(22), yields a system of 4m� 4m

linear equations. It is necessary to partition the matrix (2m� 4m) of eigenvectors into equal (m� 4m)
longitudinal and vertical partitions such that

U ¼
Uu

Uw

" #
.

Hence the local dynamic stiffness matrix for a certain element may be written as

LOj
¼ ûaT½L�locû, (15)

where

½L�loc ¼ ½X�
Tð½L�uu þ ½L�uw þ ½L�wu þ ½L�wwÞ: � ½EI �½X�, (16)

where :� denotes the Schur product and

½L�uu ¼ �hYiF
T
u ½K

2
uu�FuhYi þ FT

u ð½K
0
uu� � o2½Muu�ÞFu,

½L�uw ¼ �hYiF
T
u ½K

1
uu�Fw þ FT

u ½K
1
uw�FwhYi,

½L�wu ¼ �hYiF
T
w½K

1
wu�Fu þ FT

w½K
1
ww�FuhYi,

½L�ww ¼ �hYiF
T
w½K

2
ww�FwhYi þ FT

wð½K
0
ww� � o2½Mww�ÞFw,

where hYi represents a diagonal matrix created from the vector of calculated wavenumbers, zi, from
eigenvalue problem (12). Within the computations of local dynamic stiffness matrices defined over a beam
span, �DpxpþD, use is made of the matrix generating function over the width of the element

½EI ðY;DÞ� ¼

Z D

�D

expðYx�YpDÞ expðYx�YpDÞT dx, (17)
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which has an analytic form detailed in Ref. [6]. The convention that the exp function preserves the dimension
of column vectors has been adopted. Generating the EI matrix was performed only once thus decreasing
overall dynamic stiffness matrix computation substantially. For problems with short waveguides, (small D) or
small valued entries in fYg a Taylor expansion series for each integrated expression was performed.

Evaluation of the dynamic stiffness matrix above applies to a single spectral finite element. The matrix is
full, complex and symmetric. For a combination of finite elements, describing a general elastic domain, the
corresponding dynamic stiffness matrix has a block diagonal structure; each block derived from the expression
in Eq. (16). The description above and in the previous section applies to a layered waveguide where a cross-
section is discretized by locating appropriate interface nodes. Wave functions are subsequently found for the
composed layers, by imposing displacement continuity at the interface, thus increasing the size of the matrix
eigenvalue problem. Construction of stiffness matrices follows as with construction of stiffness matrices for a
single layer waveguide. Hence it is possible to solve multi-layered sandwich panel problems using super-
spectral elements bearing in mind the large generalized matrix eigenvalue problems to be solved.

A force may be easily included into the model if defined at a finite element nodal point. The complete
element formulation, for an arbitrary element length, element, including assembling element matrices, solving
a dispersion relation, evaluating the dynamic stiffness matrix and solving a typical problem, as in Section 3.3,
requires only 0.351CPU seconds, per frequency step, on a 1.3GHz PC for a 66 degree-of-freedom linear
system.

3. Results

The efficiency and accuracy of the spectral finite element scheme for three sample panels will now be
presented. Note that longitudinal motion of the panels has not been considered in this section. This is
principally due to well-known difficulties in their measurement but also the objective in this work has been in
vertical vibrations; the main mechanism behind structure-borne sound. First a description of the
measurements taken is given.

3.1. Measurements

Three different structures were tested in the present work: a steel beam, a lightweight aluminium sandwich
panel and a non-symmetric ceramic panel. The physical parameters of the samples used are listed in Table 1.
The experimental procedure used in this work was simply based on the measurement of frequency response of
an accelerometer mounted on the tested panel excited by an impact hammer and is sketched in Fig. 2. The set-
up consisted of an accelerometer Bruel & Keir (B&K) type 4393 (2.4 g), a B&K type 8202 impulse hammer,
two charge amplifiers B&K type 2635, and a two channel signal analyser HP 3562A. The samples were
suspended, by means of rubber strings, with both ends free. In order to obtain values for the mechanical
parameters of the homogeneous steel beam (i.e. Young modulus) and the sandwich structures components
(i.e. Young modulus of the laminates and shear modulus of the core), measurements on the panels with
Table 1

Material constants and dimensions for panels shown in Fig. 1(b)

Material property Steel Ceramic panel Ceramic Aluminium Aluminium

panel laminate panel core panel laminate panel core

Density, r ðkg=m3Þ 7850 1580 101 2250 142

Young’s modulus ðN=m2Þ 2:05� 1011 8:70� 109 1:40� 108 5:70� 1010 2:80� 108

Shear modulus ðN=m2Þ 7:80� 1010 3:34� 109 5:37� 107 1:78� 1010 1:09� 108

Poisson ratio 0.3 0.3 0.3 0.3 0.3

Loss factor 0.0015 0.001 0.04 0.001 0.01

Thickness ðh1; h2Þ (mm) — 2.5/2.5 — 1.0/1.0 —

Core thickness ðhcÞ (mm) 1.0 — 50.0 — 10.0

Length (m) 1.0 1.65 — 1.20 —
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accelerometer and impact source were as close to the ends as possible were carried out. For the steel beam
Bernoulli–Euler beam theory, giving the bending stiffness as functions of the eigenfrequencies, was employed.
It has to be remarked that due to difficulties in suspending the panels, measurements were carried out from 5.0
to 500.0Hz for the steel beam (2500.0 for sandwich panels) with a frequency resolution selected of 2.5Hz. In
addition an exponential window was applied to the captured signals.

Sources of possible errors in the measurements could have been low noise-to-signal ratio due to low
excitation force impulse or on the other hand nonlinear response caused by too high impulse force. A
coherence function was recorded during the measurements indicated the frequency range where poor quality
responses were present and are shown later in the results section. Other possible sources of error include the
mass effect of the attached accelerometer, and the potential presence of cross modes in the high-frequency
range. It was found that the accelerometer mass had only a small influence at resonance frequencies. The first
cross-modes generated for the studied panels corresponded to frequencies above 2.5 kHz in all three cases.

For the sandwich structures an inverse strategy for the estimation of material properties was used, based on
sixth-order theory, see Ref. [1]. This method makes use of sixth-order Timoshenko theory, giving an accurate
estimation of the eigenfrequencies and the flexural response of sandwich panels. The method minimizes the
model eigenfrequencies against the measured eigenfrequencies in a least squares sense with respect to the input
variables, i.e. the elasticity modulus of the laminates and the shear modulus of the core. Accuracy up to two
significant digits was chosen.

3.2. Dispersion relations

The eigenvalues, z, also referred as wavenumbers, are solved numerically for a given frequency once the
equations of motion have been assembled through solutions of the QEP Eq. (12).

In Fig. 3 the case of a simply free–free steel plate is investigated. The resulting dispersion curves using five
element layers are shown, where the material characteristics and geometry of the plate are given in Table 1.
Five quadratic polynomial functions, see Eq. (9) were used to describe the displacement yielding a 22� 22
QED. No internal damping term was included here and the known analytical wavenumbers for flexural
waves for thin isotropic plate, given by k1 ¼ ð12ð1� n2Þr=E0h

2
Þ
1=4o1=2, k2 ¼ ð2ð1þ nÞr=E0Þ

1=4o1=2, [18] with
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Fig. 3. Propagating wavetypes for a 1.0mm thick steel panel: solid line, analytical results: dots, SFEM computed results.
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thickness h are shown for comparison. The analytical and predicted dispersion curves are in good agreement
and with more elements or increasing polynomial order the relative error of the predicted wavenumbers
decreases, see Ref. [7] for an analogous acoustic problem.

The spectral dispersion relation approach was used to calculate the wave types for typical elastic sandwich
panels. Most sandwich panel cores are orthotropic; however, for our analysis the following examples assume
an isotropic core. The effective isotropic properties of an aluminium foam core with steel laminates was used in
the first sandwich example and are given by: E0 ¼ 280� 106 N=m2, n ¼ 0:3, r ¼ 142 kg=m3. The skins are
taken to be aluminium with isotropic properties given by: E0 ¼ 57� 109 N=m2, n ¼ 0:3, r ¼ 2250 kg=m3.
A symmetric sandwich construction is considered with 1.0mm thick skins and a 10mm thick core. The
dispersion curves of the propagating wave types of the sandwich panel were calculated using the spectral
element approach and are plotted in Fig. 4. Below approximately 15.0 kHz, two propagating waves exist
corresponding to flexural and shear waves. Around 15.0 and 25.0 kHz two additional propagating waves cut-
on the higher frequency wave has a negative group velocity and only exists over a very narrow frequency
range; the other wave has a positive group velocity and exists over a much broader frequency range.

The effective isotropic properties of a soft foam core with ceramic laminates was used in the second
sandwich example and are given by: E0 ¼ 140� 106 N=m2, n ¼ 0:3, r ¼ 101 kg=m3. The skins are taken to be
aluminium with isotropic properties given by: E0 ¼ 8700� 106 N=m2, n ¼ 0:3, r ¼ 1580 kg=m3. A symmetric
sandwich construction is considered with 2.5mm thick skins and a 50mm thick core. The dispersion curves of
the propagating wave types of the sandwich panel were calculated using the spectral element approach and are
plotted in Fig. 5. Below approximately 4.0 kHz, two propagating waves exist corresponding to flexural and
shear waves. Around 4.0 and 6.0 kHz two additional propagating waves cut-on which involve an out-of-phase
motion of the skins of the panel in the in-plane direction. At higher frequencies it is evident that additional
waves cut-on.

It is well known that Timoshenko theory is not capable of correctly describing sandwich beam vibration as
the deformation of the laminates of the sandwich is coupled to the shear deformation of the core. This
coupling becomes important in the high-frequency range and effectively stiffens the beam as compared to a
homogeneous beam with identical shear modulus and bending stiffness; in principle, the laminates limit the
shear deformation of the beam core. Thus, it can be concluded that there are three major mechanisms of
deformation governing the vibration of a typical sandwich panel; namely that of pure bending of the entire
cross-section, which is a low frequency phenomenon taken into account by classical beam theory; pure shear
of the sandwich panel core which dominates the mid-frequency range; and finally that of the bending of the
laminates due to shear deformation of the core. Naturally, at yet higher frequencies additional mechanisms
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Fig. 5. Propagating wavetypes for a 50.0mm thick ceramic sandwich panel: dots, SFEM computed results.
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become important; however, for typical sandwich panel structures subject to vibration in the audible
frequency range (p1:5 kHz) these may often be neglected. In the following section we consider forced
responses at frequency ranges well below the cut-on frequency of shear deformations.

3.3. Forced response

To provide a comparison with the numerical results here comparisons were made, in addition with the
measurements, with FEMLAB 3.1 results [19]. The geometric properties and the total mass density of the
structure are assumed to be known. For the SFEM and standard finite element method the aluminium foam
sandwich sample was modelled using a total of 66 degrees of freedom and 14 978 degrees of freedom,
respectively. The standard finite element method used cubic polynomials over a triangulated domain; the mesh
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of 1593 elements is shown in Fig. 6. Computing time for FEMLAB 3.1 calculations, in direct response
computations, totalled around five times that for the SFEM. Total CPU time for the spectral finite element
was of the order of just under 5 min on a Pentium IV, 512Mb 1.3GHz desktop PC and 20min using
FEMLAB 3.1 software.

Finally measurements for different positions of accelerometers and hammer were carried out. The signals
from the impulse hammer force gauge and the accelerometers were conditioned by Bruel & Keir type 2635
charge amplifiers before being sent to a digital spectrum analyser. For each measurement, 10 signals were
acquired and the average response determined. The ordinary coherence function was checked to ensure that
the data were of acceptable quality. The frequency range of the measurements was 5–500Hz for the simple
steel beam and 5–1.5 kHz for the two sandwich panels with a resolution of 2.5Hz for each. The lower
frequency limit was determined by the low accelerometer sensitivity. At 1.5 kHz, the flexural wavelength would
be at least 10 times the depth of the panel so there was no risk of the motion tending toward that of a
Timoshenko beam [18].
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Fig. 6. Finite element mesh (not to scale), FEMLAB [19], using 1593 cubic triangular elements totalling 14 978 degrees of freedom for each

frequency. Note the inhomogeneous mesh design featured in the software package.
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Fig. 7. Acceleration levels at 0.27m and hammer at 0.74m from edge. Solid line (-) measurements; dashed line SFEM (–); dots FEMLAB

(�) for steel beam.
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Fig. 8. Coherence at 0.27m and hammer at 0.74m from edge for steel beam.
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Fig. 9. Phase at 0.27m and hammer at 0.74m from edge for steel beam. Solid line (-) measurements; dashed-dot line SFEM (-�) for

steel beam.
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Comparison for amplitude of the acceleration between experimental results, SFEM and FEMLAB [19] and
phase between SFEM and measurements are reported in Figs. 7–15.

3.3.1. Steel beam

Fig. 7 compares the predicted transfer accelerance for the steel beam structure from Table 1, using a
standard finite element scheme and the spectral element method and the measured response. The following
observations are made:
(a)
 Both numerical methods agree with the measured response for the homogeneous steel beam in the
frequency range given; almost indistinguishable transfer accelerance in Fig. 7 except at anti-resonances.
Differences are shown in the coherence Fig. 8 over an extended frequency range.
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Fig. 10. Acceleration levels at 1.2m and hammer at 0.9m from edge. Solid line (-) measurements; dashed line SFEM (–); dots FEMLAB

(�) for aluminium foam sandwich panel.
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Fig. 11. Phase at 1.2m and hammer at 0.9m from edge. Solid line (-) measurements; dashed-dot line SFEM (-�) for aluminium foam

sandwich panel.
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(b)
 The transfer accelerance is over-predicted by the numerical models except in narrow band resonant
regions. This may be due to small mass sensitivity effecting vibrations in these regions, evident in the
phase, Fig. 9.
Over the frequency range, the average relative error between the FEMLAB 3.1 and SFEM numerical
methods and the measured data were 2:5% and 2:6% respectively.
3.3.2. Aluminium foam sandwich panel

Fig. 10 compares the predicted transfer accelerance and phase for the aluminium foam sandwich structure
from Table 1, using a standard finite element scheme and the spectral element method and the measured
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Fig. 12. Coherence at 1.2m and hammer at 0.9m from edge for aluminium foam sandwich panel.
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response and Fig. 11 compares the phase. The following observations for the aluminium foam sandwich
sample were made.
(a)
 The numerical methods agree with the measured resonance data in the total frequency range up to 600Hz
but above which each method overpredicts the resonant frequencies against the measured data.
(b)
 The standard finite element method overpredicts the accelerance below 600Hz whereas the spectral finite
element underpredicts, the phase behaviour is shown in Fig. 11.
(c)
 Average relative errors of 2.3% for FEMLAB and 2.4% and SFEM were obtained. Coherence for the
measurements is shown in Fig. 12 shows good coherence up to 2 kHz, opposed to the ceramic panel
described next.
The next example shows the limits of comparison for a thicker sandwich sample.
3.3.3. Ceramic sandwich panel

Fig. 13 compares the predicted transfer accelerance and phase for the ceramic sandwich structure from
Table 1, using a standard finite element scheme the spectral element method and the measured response and
Fig. 13 compares the phase. Generally the response is different to the two previous examples, the core is much
thicker and lighter than the aluminium foam panel and the following observations were made for the given
source and receiver position.
(a)
 The two numerical methods agree in the frequency range up to 1500Hz but discrepancies with the
measured data appear as low as 800Hz. The difference is evident in the phase behaviour in Fig. 14 and the
coherence, Fig. 15. Note the error of the order of 14 dB at around 1050Hz, which may be accounted for by
the apparent cut-on of shear waves, see Fig. 5, where the laminates are moving out of phase with each
other and hence are difficult to record since this motion using the accelerometers and impulse hammer.
(b)
 Both numerical methods slightly overpredict the transfer accelerance below 600Hz. Above this frequency
the numerical methods significantly underpredict the accelerance. In Fig. 14 the phase shows curious
behaviour between 400 and 800Hz, not observed in the measured data.
(c)
 Resonant peaks are over-predicted by the numerical methods above 800Hz, clearly seen in Fig. 13. This is
possibly due to the difficulty in estimating the material parameters for the sandwich core, which may not
display elastic behaviour. For the ceramic sandwich panel average relative errors of 3:1% for FEMLAB
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Fig. 14. Phase at 1.07m and hammer at 0.68m from edge. Solid line (-) measurements; dashed-dot line SFEM (-�) for the ceramic

sandwich panel.
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Fig. 13. Acceleration levels at 1.07m and hammer at 0.68m from edge. Solid line (-) measurements; dashed line SFEM (–); dots FEMLAB

(�) for the ceramic sandwich panel.
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scheme and 3:0% for the SFEM technique. Similar orders of error were also recorded at other receiver
points.
4. Conclusion

A spectral finite element developed for the analysis of structural vibration at high frequencies for sandwich
panels has been presented. It describes the motion as a combination of travelling and decaying waves along the
structure using a low number of degrees of freedom. It has been shown that the SFEM agrees well with
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Fig. 15. Coherence at 1.07m and hammer at 0.68m from edge for the ceramic sandwich panel.
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numerical software. In addition the spectral method has an added bonus of evaluating dispersion relations for
‘‘no extra charge’’. Indeed, it may be possible to use the method in an inverse procedure for defining
characteristic parameters for the structure.

The developed laminate model is useful for structures that are uniform along a single coordinate axis but
otherwise arbitrary in material composition and geometry. Furthermore, since the cross-section displacement
functions are formulated in terms of the nodal displacements using high-order polynomials it can easily be
coupled to a conventional finite element method.
(1)
 With a large cost-saving in computation time over conventional finite elements this numerical method has
been shown to have promise for numerical predictions of vibration response for thin and thick laminate
structures. For similar orders of magnitude of relative error, versus measurement data, the method gives a
significant reduction in the numbers of degrees by a factor of 1/230 in a frequency range up to 1.5 kHz.
This is valid for sandwich panels of the order of 1.0–2.0m in length compared to a modern commercial
software package.
(2)
 The SFEM described here is also advantageous for built-up structures where the main components
are uniform in length and thickness. Again this reduces the total numbers of degrees substantially
if coupled to a standard finite element scheme. Inhomogeneities in geometry or material may also be
treated by a standard scheme and coupled with the SFEM technique. Nevertheless, anisotropy in the
core thickness may be treated by the SFEM technique if material properties vary in the vertical
direction.
(3)
 Apart from obvious limits of applicability of the method for non-uniform regions, there is a frequency
limit which depends on the cut-on frequency for cross-sectional modes. Above this limit a three-
dimensional SFEM scheme is necessary.
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Appendix. Finite element matrices

Partial integration in the x-direction, assuming O ¼ H � T , the variational formulation in Section 3 leads to
the system Z

T

Z
H

ðdûa
Þ
T o2½N�Th½q�½N�û� ½r̂zN�

T½C�r̂z½N�û� ½r̂zN�
T½C�½r̂N�

dû
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�
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ðdûa
Þ
T
½r̂N�T½C� ½r̂zN�ûþ ½r̂N�

dû
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� �� �
H

dx ¼ 0. ð18Þ

Matrices ½K2�, ½K1�, ½K0�, and ½M� are given by

½K2� ¼

Z
H

½r̂N�T½C�½r̂N�dH, ð19Þ

½K1� ¼

Z
H

½r̂N�T½C�½r̂zN� � ½r̂zN�
T½C�½r̂N�dH, ð20Þ

½K0� ¼

Z
H

½r̂zN�
T½C�r̂z½N�dH, ð21Þ

½M� ¼

Z
H

o2½N�Th½q�½N�dH ð22Þ

and are conveniently partitioned into m�m matrices for use in setting up dynamic stiffness matrix in
Section 3.1:

½K2� ¼
K2

uu 0

0 K2
ww

2
4

3
5; ½K0� ¼

K0
uu 0

0 K0
ww
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4

3
5; ½M� ¼ Muu 0
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" #
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H
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K1

wu

K1
ww

2
4

3
5 ¼ Z

H

½r̂N�T½C�½r̂zN�dH.
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